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ABSTRACT

The feasibility of using a series of Wagner functions to represent
airfoil contours in design procedures has been investigated . It was
demons trated that a large class of airf oils can be adequately described
by a relatively small number of terms . A least squares type of procedure
was used to determine the unknown coefficients in the series represen-
tation . The use of Wagner function representation in thin symmetrical
ai r fo i l  desi gn was investigated. Both the direct method of analysis
in which  the veloci ty distribut ion is calculated for a known shape and
the inverse method of design in which the airfoil shape corresponding
to a specified velocity distribution is determined were considered.
standard  airfoil data was used to test the suitability of the Wagner
function representation , ~nd the results were fourtd to be satisfactory .
Rap id calculations were possible even in  the inverse mode since the
U : , ’.’ 

(,f Wagner fun ct~ orr, allowed the determination of all the impropcr

~r~~err ii:~ that i~ c ”aT’ in thin airfoil theory in closed form .
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Section I

INTRODUCTION

There are two types of numerical nrocedures uvailable for the Lp r.

of airfoils . In one technique , called the direct method , the flow about

a pre cribed airfoil is analyzed; and then , based upon this result , the

a i r fo i l shape is modified in an attempt to sat isf y the design conditior

The other design formulation is the inverse method in which the airfoil

surface ;r~~ sures or velocities are specified , and the a i r foi l  shape is

subsequen tly determined. The design is usually optimized subject to

specified aerodynamic and structural constraints.

There have been marty recent attemptn to computerize airfoil design

procedure . Barger and Brooks [1] used a streamline curvature method to

design airfoils. This method is based on the Theodoreson Transformation ,

which requires complicated conformal mapp ings for the representation of

the airfoil geometry . After the airfoil is tailored to obtain the desired

pressure dis tribution , the contour has to be adjusted to satisfy the proper

trail ing edge conditions. TSFOIL code [2] has recently been developed for

the analysis and design of two-dimensional transonic airfoils . It is

capable of compu ting both free-air flows and flows under various wind-

tunnel wall conditions. The implementation of TSFOIL requires the specifi-

cation of the airfoil geometry , preferably in a suitable functional form.

Other design methods of note are the inverse methods of Beatty and

i r r ()rrlcr: [3] and Carlson [4]. Most of these codes are based on the

inviscid theory . The usual approach for taking viscous effects into account
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is to treat the airfoil determined by the inviscid design method as the

disp lacement surface and to subtract prom it the displacemen t thickness

determined by a boundary layer computation . The latest version of the

Carlson ’s code [5], for examp le , accounts for the viscous effects in this

manner.

t~n important advantage to the 
computational method is that it allows

the use of numerical optimization techniques for au tomated airfoil  design.

Vanderplaa ts , Hicks and Murman [6] have investigated one such method which

uses direct optimization for two dimensional flow . They have devr~~oped a

numerical optimization design code by linking an optimiza tion program

based on the method of feasible directions with an aerodynamic analysis

program that uses a relaxation method to solve the partial differential

equations governing inviscid , small disturbance flow . Hicks and Szelazek

[7] have recently developed a similar technique for design of subsonic

airfoils using a minicomputer . The numerical optimization technique in-

volves the minimization of some specified param eter, such as the lift

coeff ic ient , for a set of design parameters describing the airf oil geometry

and satisfy ing a number of specified constraints. A weak poin t of this

analysis is probably the use of a simple polynomial contour representation ,

since it somewhat limits the class of obtainable solutions .

A second procedure being developed at the National Aerospace Laboratory

in the Netherlands and described briefly by Sloof [8] is the so-called

constrained inverse method . In this procedure , a least squares technique

is used for the design problem in such a manner that an a priori specified

balance is obtained between the prescribed pressure distribution and the

geometric requirements. Labrujtre [9] has app lied this technique to the

two-dimennional incompressible flow problem .
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The design procedures mentioned above are only a small sample of a

large number of such methods which have already been developed or are

currently under development . An important first step in these methods

is the specification of the airfoil geometry . Ideally ,  the functional

relationship chosen should be numerically well conditioned and be capable

of modeling a wide range of airfoil shapes while maintaining computational

ef f i c i ency . I t seems worthwhile , therefore , to search for arid test new

fu nct ions to represen t airfoil geometry .

The functional relationship proposed here requires the expression of

the slope of the airfoils in terms of a Fourier series of the so-called

Wagner functions [10]. This proposed representation of the airfoil corttour,

described in the next chapter, seems to meet the requirements stated above .

It will be demonstrated that it has the capability of generating a wide

class of airfoil shapes in terms of a small number of parameters . In

addi tion , the Wagner function representation will be used in an inverse

type of procedure using thin airfoil theory and the results will be compared

with available data for standard airfoil shapes.



Section 2

WAGNER FUNCTION REPRESENTATION OF AIRFOIL CONTOURS

In an airfoil design procedure , the contour of the airfoil is usually

represented in one of the two ways. One way is to represent the contour

by means of a polygonal-shaped figure . This type of representation is

suitable for computations by direct method using both finite difference

and finite element procedures because of the ease in apply ing the boundary

conditions. In an inverse procedure , however , this may lead to shapes

that correspond to the given pressure distributions but are unacceptable

from the structural viewpoint .

Another way of representing the airfoil contour is to express it in

terms of simple functions. The functions used most commonly are polynomial

and trigonometric functions. The polynomial representation is , by far , the

most popular but has the drawback of requiring a large number of parameters .

It is unsuitable for the representation of some shapes and requires geo-

metrical constraints (for example , to obtain closure at the trailing edge).

Fourier Sine seri~ s are also used in airfoil contour representation . Such

a representation allows the use of Glauert integrals in the classical thin

airfoil theory (see Section 3). The Fourier series representation suffers

from somewhat the same drawbacks as the polynomial representation .

It is obvious , th erefore , that the computational efficiency of a

design procedure will be enhanced significantly , if the airfoil can be

represented adequa tely by a function in terms of a small number of parameters

and without requiring additional constraints. 

~~
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The functional relationship proposed here requires the expression

of the slope of the airfoil in terms of a Fourier series of Wagner

functions. Let the contour of a symmetrical airfoil be the equation

y = f(x) (o ~ x ~ 1) where x is measured along the chord of the air-

foil and both coordinates are non-dimensionalized with respect to the

chord length c. The slope of the airfoil is then expressed as follows :

f (x) 

~ 

A W ( 0 )  - A
0 

(2.1)

where 0 is related to x by the equat ion x sin~ U~/2.

W ( 0) are the so—called Wagner fuit . tio n~ p iven by

w (  ~ 
2 cos[(n + l)O]+cos nh

n ~ - 
i sinO (2.2)

The above equation for the slope can be easily integrat ed to giv

the airfoil contour .

It is given by

y - A sin2 } (8 sinO) +~~~ 

A 
[sin(n + 1)0 

÷ 
sin

(2 3)

Note that the above expansion itself ensures closure ~‘ . the trailing edge .

The suitability of equation (2.3) in representing airfoil contours

will be tested by fitting this expression to standard airfoil shapes. For

this purpose , the data for NACA 14-digit airfoil profiles [ii] will be used.

In order to fit the equation (2.3) to this data, it is convenient to w r it ’
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it in the following discrete form:

Y . = F (o .)A + F (e .)A i- i- F (OJA (2.4)1 0 1 0 1 1 1 n 1 n

where
L.

0. 0. + sinO ..2 1 1 1F (0.) = — sin — +  — ,0 1  2

and

sin(n + 1)0. sin nO .

n + l  1 ]  /

(n = 1, 2, -- ).  The problem is to find A0, A1 A so that equation

(2.3) will best fit a given airfoil profile . The method of least squares

[12] will be used here for this purpose and a brief introduction to this

method is given in the next section .

Method of Least Squares

Let there be a set of n data points (X., Y.) through which it i’.

desired to pass a certain curve. This curve is to represent the “best

fi t” in the least squares sense. Equation (2.14) is rewritten in the

following form :

Y . = A F (o . )  + A F (o .)  + + A. F~ (0 .) (2.5)1 1 1  i 2 2  i J J I
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w h r e A = A , A~ = A .  , F’~ = F’ , F~ F. and 7. r’c’pren (’llts
1 0 j + l  1 0 j  i ÷ 1 ’  I

i. calculated valut . of the ordinate by the Wagner function repr’f ’ nent It m l

f o r  th. ith point. If the actual ordinate of this point is Y ., tinr i

the error of fit it the ith point can be defined as

E. = Y. — Y . (2.6)
1 1 3.

The sum of the squares of errors at all of the i,it ,i points i~~;

called the total error of fit and is given by

S =

~~~ 

E.~ 
(y - V 2 ( 2 .7)

The errors have been squared to eliminate possible cancnll ,jt ion . Th.

total error is a function of how well the curve “fi ts” ti n data points;

1. e., it ~~j a function of parameters ~ which control the posit ionin~’

of the curve in the X-Y plane . It should be fairly evident that t i

“best” fit is that position which minimizes the total error. To f ind

th is position , let S be a function of A’ s and require th ,it it’

s rivatives vanish. This leads to the following equations

~~(Y. - V .) 2 0, j = 1, 2 n (2.8)

or

Y.

~ (Y. — 7.) 4L4~ =
. 1 1 ~~~~i=l A

-I
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W 0

r1
(o
1) r~(e~) . F(o 1)

r 1(8 2 ) F2
(0

2
)

—4. . 
. 

= [F]
A

r (e ) F (~ )
1 m n m ( 2 . 1 0)

sit i’s (2.’i) 5 0  t h e n  be w r i t t i i n  tb  m a t r i x  form as

[~~1~ [Y] — [Fi t [F] [A] = 0 (2.11)

A
1

A
2 “2

A
3

[A )  - and [y]

A Y ( 2 . 1 2)n lii

L t ~~ [Fi
t [F] = [C] and [F]~ [Y ]  = [B] .  Equation (2.11) can then

t ~
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[B] = [C] [A] (2.13)

— l
Multinlying both sides of the above equation , by [C]  , t l i ~ ( l e S C ! i I ’ I i

coefficient mat~’ ix [A] for the  best  f i t  can be o h t a i r ’i i f u l l e w s :

[CY ’[B] = [Al ( 2 . 1 1 4 )

Pp r’sentat ion of Gtanidar’d A i rfoil

The ii .  e of t L ~ method  of leost squar ; w 11 new be 111w. r,it~~d l y

i :tt i ~~~ the W a n  n I ~~~~~~ ion r i  re;;ertt,it ion to the N A C A , 000( oh c .c j  ~

Table 1 gives the actual value of the ordinate ; (taken from 1~c ’ f .  ti l l)

ef this dirfoil for various cliordwise locations. Truncat 1 for ~ : I

W~~ n . r function representation (equation (2.4)) we; used ii itt irig t i c

a i r f o i l  contour data .  For n = 2, the least squor e met hod g ives  t h e

val ue of the coefficients as A0 0.07 1049 , A
1 

0.011098 , and

A
2 

= 0.0051307. Thc . calculated values for each chordw i on p o s itiOn I ;

w ll as the percentage errors are also gi ven in Table 1. It i noted

that at the leading and trailing edges the errors are fairly l i r e . or-

sid ’ralile improvement is obtained by considering a four-term t xpansier

(n = 3). The calculated values of the coefficients in the e w e  a r :

A
0 

= 0.10148, A1 
= 0.019233 , A2 

= 0.0044033 and A3 
= 0.008108. The

percentage errors in representing the contour of the airfoil at various

chordwise locations are shown in Table 1. This time th e ’  e r ro r  at t t

leading and trailing edges is less than 1.5% , and is consid rn~ib1y less

at other places. This accuracy is deemed to be sufficient for 1~~~r c’ ;; ’ n t i r g

the shape of the NACA 0006 airfoil. The graphical comparison of cahu l~~t c c i

ar d actual h i l l S i shown i i  I it’ur’ ’ J
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Computations were also made for several other standard airfoil

shapes (NACA 0010 and 0018). The results for these computations arc ’

presented in Tables 2 and 3 and Figures 2 and 3. It is clear from

these results that a variety of airfoil shapes can be represented by

i series of Wagner function in terms of a relatively small number of

p romoters .

Wagner function series may also be used to represent t h e  ul per

Ar r ; d  lower surface of an unsymmetrical airfoil. The results for NACA

4 1  and 4412 airfoils are presented in Figure 4 and 5.



Section 3

USE OF WAGNER FUNCTIONS IN SYMMET RICAL AIRFOIL DESIGN

The rroblem of calculating the flow field and the aerodynamic

re f net  los of any given arbitrary airfoil with no restrict ions as to its

thickne;;s , camber or angle of attack is complex in practice . The available

rrsthods are not convenient for either a rapid estimat ion of the velocity

or pressure dist ribut ion over the airfoil or for designing an airfoil

; rofil . e that will have a prescribed surface distribution of velocity or

f r”ssure. In order to demonstrate the use of the Wagner function rei re-

o r , tation , it will be advantageous to have an approach that will in some

way simp lif y the mathematical conditions of the problem . Such an alterna-

tive ap~ roach is provided by the classical thin airfoil theory . In this

to ’ ory , the airfoil is assumed to be sufficiently thin and elongated so

td~~ t the assumption of small perturbation can be made . Even though such

an b ~um~ t ion is not valid near the leading edge of an airfoil , the

so1u~ ion of the resulting simp le problem is remarkably useful.

The details of the thin airfoil theory may be found in Referenc

[13]. h t h  ‘he hIov rrlin g equations and the boundary conditions are

lin ear’izc’d in this t h e or y , thus allowing the use of s up er p o s i t i o n . T i e ’

probl’;rr of a t i f n  airfoil at a non—zero angle of attack can then f

r ’( ’i r o s e r c t e d  as the  superposit ion of t he  problem for  a symmet r ica l  a i r ’ —

fo i l  it zero I n c  i c lc ’n c e  and t h a t  for a cambered a i r fo i l  w i t  II  nero t i i i ck ’e ’r ;s

it  a ni on — z n ( , ir y, l c  of a t t a c k .  Tb :  s o l u t i o n  of th e ’ c ’  two  ~~r c l i r e  P lay I .

J I  comp l ished f j the method e l  superposition of s i ngu l ar i t  I ’  . The

I icat ioni  of t h e  Wagner f ur i c t  ion r r ’c j~r ’e ;enitat  ion to  I he syrnme t r ’i c a l  a i r  I c  i
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design using thin airfoil theory is discussed below.

Thin Symmetrical Airfoil  at Zero Incidence

The flow past a thin symmetrical airfoil at zero angle of attack

(see Fi gure 6) can be simulated by a continuous distribution of

sources and sinks , of strength cy = c,(x) per unit length located along

~he chord line of the airfoil. Here x is the distance along the chord

litr e measured from the leading edge. An element of length Ax has

associated with it a source of strength o . 

~x on the x-axis .

In the context of the thin a i r fo i l  theory , the flow perturbations

are assumed to be small compared with the free stream velocity V. Also ,

the thickness of the airfoil is considered to be small compared to the

chord length c. The flux across a line such as PQ is then approximately

2y. However , all the fluid generated by the sources be twee n 0 and N

must cross the line PQ, because the part POQ of the boundary of the airfoil

is a s treamline.  Thus

f 0(x) dx = 2Vy (3.1)

Diff erentiating with respect to x yields

(x ) = 2V 1~2L (3.2)

Thus the required source of distribution is simply determined by t l i c ’

shape of the airfoil. Note that

2V 

~4 dx = 2V [y] 
~~~ 

0
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so that

cf o(X) dx = 0 (3 .~~)
0

which confirms that the algebraic sum of the source and sink strengths

within the body is zero. Further, at p laces where > o, i.e., at the

front of the airfoil, the source strength is positive . At the rear of A

the airf oil , on the other hand, there are negative sources (sink s) .

In this first order theory , the velocity perturbation at the

point F’ in Figure 6 is approximately the same as the point N’ on t le

x-axis , and is denoted by u ’ in the x-direction . The component at F’ Ju ”

to the source o(x) dx at N is then given by

d = 
o (x )  dx 

- 
2V f ’  (x )  dx

U ’  2ir (x — x ’)  — 2ir (x — x ’ )  ( 3. 5)

The total perturbation velocity at P’ is then

- V 
C f’(x) dx

u — 
Cx — x ’)  ( 3j  )

It  is convenient  to let x = ½ c (1 — cos 0 ) .  Then dx ‘~ c s i n ’  r1~r ,

and (x - x ’) ½c (cosO - cosO), so that

V ~~f ‘ ( 0 )  . ‘ in ’~ (1~U ,  (coSo - cos’T~~) ( 3 . 7 )
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The perturbation velocity u ’ can thus be calculated from equat ion

(3.7) if the slope of the airfoil is known as a funct ion of I~~~ If  th e

a i r f o i l  contour is described by the Wagner func t ion  r ep r e s e n t a t i o r

[equat ion  ( 2 . 3 ) ]  , then

- A 12 ( 1  + cosO) 
- + An cos[ (n + 1) ’ ]  cash

— 
0 L sin ii ii sin (h .h)n 1

A
The perturbation velocity is then given by

u ‘ 1 ii 2 ( 1  + COS )
= — ~ A

0[ ]- ;;in~

÷ ~ A 
fcos[(n + l )s]  + cos n~] ~~d0 (3. ~)

n l  n I corD - cost ’ j j

for which

u ‘ 1 1~ (l  + cos 0)! ii — sinO 1
I d o

v 0 

~ 
[ cosO - cosO ’ J

2 it cos[(n -i- 1)0] + cos nO
+~~ A — f
r i l  

n 
~ 0 cosO — ~~~~~~~~~~~ (3.10)

Except for the second term , all of the integrals  appea r ing  on t he  t I

hand side can be determined by means of the following Glauert. i n t l  r~ als [ i i ]

~~~~ d0 , = 0 (3.U~~)cosU — cos

cos nO sin nO ’
— 

~~~~~~~~~ 
do = 71 . 

sin 0 ( 3 . l l h )
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The integral in the second term can be wri t ten  as

17 s inO — sin Of , de ~~~~~~~
0 cosO - cosO

Since the contr ibut ion due to the sinO ’ term is zero becaus e of equdl i ;n

( 3 . l la ) ,  the integral  (3 .12 )  can easily be evaluated as fol lows :

it s i n;  — sinO 8+6f , dO = - f cot ( —)d~ 2 1n  tan — (3.13)
0 cosO — cosO 0 2 2

The equation (3.10)  th e n  becomes

u ’ r2 2 0 1
= Aoj_ + — in tan — +

V it it 2]

2 1sin ( n + l ) D  + sin ~ 1
n~ l 

A 
~~ 

[ 
s i nl i

’ j ( 3 . 1 1 4 )

The above equation can be rewritten in the form

U , , I I I

= A
0F0

( O ) + A1F1
( O ) ÷ ÷ A

n
F
n

(O ) (~~. ~

c-

2 2 0
F — + — l n  tan —0 11 11



2 1~r; (n ± l ) 9  + s i n  nO
F = — 1—-——--— In 71 . -sin U

L

I F  the values of the Wag ner coefficients (A ’ s)  are k n o w r :  F r  a y v

~i rfo i 1 , t h e r ~ the  per turba t ion  ve loc i ty  c e r ’r ’e s ;e I d I : g  t o  a g vor

can P1? determined easily from equation (3.15).

For N A C A  0006 airfoil , the cooffi:ients A’ s were ~,~i~~ l ted n

C h al t e r  2 by us ing the  known contot,~r of the  a i r f o i l .  The r’lJrHiti o n

ve loocit:ies can then be evaluated at var~ ci’ rs cl i rdwi r b c  i . h’s Ps i

e:uottc: ; (3.15). The reference data [11] as well a;; the ’ o~h :i,ilat 1 va~ ue’;

are g i v e r,  in Table 4 and Figure 7. Thc’ err r in total velec f t y  an d

cressure is of the order of one percent for this 6% thic k airfo~ 1

Similar calculations were also made for MACA 0010-64 and 0018 air f , ’iJs

ar ;cJ the  resul ts  are g iven in Table 5 (Fi gure 8) and Table 6 {Fh’o ° ) ,

ros~~ect ively.  There is a considerable amount of rr ’er at t I : ’ I J f

and trailing edges for the MACA 0018 airfoil. This i,s to be ex; cie

since thin airfoil theory is being used for a moderately thick ( 18% )

a i r fo i l .

Equation (3 . 1 5 )  can also be used in an il vI r , : t / I I ( :  I5~ ~ I I

w hich is more us ful from a design stand p o in t .  The a i r s  1 1 ‘ in s ’

‘ f t n wan t s  t o  de termine  the contour t ha t  wi l l  n ,rodu c ’ a de: h ;

or r s ur e  distribution . He may want a j i r ’ t h  1 1 1  t f e  or 1 t r ’ ’~~

f o r h t d f lc e , so tha t  the  a i r f o i l  will S cv f ~v ~ S e 1 0 1 :  ~, c :  ,‘ love r

c r tics (delayed sep ir i t i o n , low 5 ~ e t c .
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The coeffi cients A in equation (3.15) are the same is  t h ose
n

b l f ’ c b r i ng  in the Wagner function representation of the airfoil peel i i ;

as g iver  by equation ( 2 . 3 ) .  Once these c o e f f i c i e nt s  ~ir~(~ det erm irc i , ti~

share of the airfoil that corresponds to a given velocity distribut ion

becomes known. Comparing equation (3.15) with equation ( 2 . 1 1) ,  whi ch W,1s

used to dete rj;irrc the coefficients in Wagner series r ep r e s e r t l t  1 ( 1 7 1  of

it ; airfoil by the least squares method , one may observe that t i e tWO

equations are essentially of the same form . The least squares method ,

as described in Chapter 2 , can also be used to determine the coeffici ots

A in equa t i on  (3 .15)  that  correspond to a specif ied v e l o c i t y  d i ; ; t n i i ’ ; t i o n .

The inverse procedure described above was tested by using the

~ r cwn velocity distributions for standard airfoil shapes to determine the

r o orr os i o n d i n g  contours . The re;;lcIts for’ JACA 0006 , 0010_I tt and 0010-66

airfoils are preseritld in Table:; 7, P O t c h  9 (!‘i ,eure  10 , 11, and 17) ,

r’esrectively . The c a l c ula t i o n s  were ~~r’~ t r o d F l I T ’  t i c  ca;;e’ n 3. The

errors at the trailing edge can he i r t  c ’  v : ;  I , r I I wh , d  by u s i c o  a l a r ’ per

sure r of terms in the Wagner s eC l  CO tO ’f  r I  : ;er i t a t  i o n .



Sec tion 4

DESIGN OF NONSYMMETRICAL AIRFOILS

A symmetrical airfoil at zero angle of attack is incapable of

producing any lif t or p itching moment . As indicated in Ci oi t ’ r  3 , a

cambered a i r fo i l  can be represented as a mean camber b ins  of zero

th i ckness  wi th  a symmetrical th ickness  d i s t r i bu t ion  su I ’ e r i m i  sssd O~ : 1

Within the context of the thin airfoil theory , the induced v locit ’/ at

any ~or n t  of the cambered airfoil may be found by cu t s c ’r i r r p ing

induced velocity at the point due to the camber line arid t i l t  du e to

the thickness distribution . Just as the summetrical airfoil, wi ’ analyn ’S

using a distr ibution of sources , the induced velocity due to o r an i er ’

l in e  may be calculated by replacing it by a vortex system .

A camber line can be represented by the same shape as t i c  shown

in Figure 6 for a symmetrical airfoil. It is unsuitable , however , to

represent the camber line by a series of Wagner functions . It was

found that such a representation requires the evaluation of highly

singular  integrals . Camber lines are best r epr esen ted  by mean;:; of

piecewise polynomials. Standard MACA camber line shapes , for :xIrn I oe ,

are built in ti;is manner.

Allen [14] showed that the load dis t r ibut ion and the slope c f

the camber lir v can be represented in terms of conjugate Fouri ‘r’ ,: r’ic ’c .

If the slope of the camber line i s  represented as

dy
= b cos n i l  (4 . i )

dx n 1



1,1

the  l i f t  c o e f f i c i e n t  at zero angle of at tack is g iven by

CL O  = it (2B
0 

+ B
1
) ( I , . )

L
i t i d  t o  ~ i t ch i n g - m o men t  c o e f f i c i e n t  about the  qua r ter -ch r ’ l  ‘ o u t

C = ~~
- (B - B ) ( i i . i )

m 4 2 1

‘Fe

it dy
B = — 

~~
- f —s- do ( l i t i )0 it

0 
dx

and  B~ and B 2 are the  f i r s t  two c o e f f i c i e n t s  in the  Four ier  cr i e s  i f

E p u a t i ori (4.i). Von M i s e s  [15] has suggested a s imp le way of c a l c u l a t i th

e: f f i c i e n t s  B when the  camber line is represented in tort? ; of

ci yriomials.

It is ‘t ;’ i ar’ent from Equations (4.1) and (4.2) that t i ~ . l i f t  0 t h

i tching-moment coefficients are controlled by B
1 

and B
2
. A cornie r ’

l I t ; ’  could t herefore be designed by specif ying B
1 

arid B
2 ~ t

w t h  t i  desired values of C and C . For a camber l i ne  co o i , t , a i r , ’ ; .
L,0 rn

a family of airfoil :; can be generated by specif y ing varies t i l l  ks

d i n ’ r s l h  ions .  A;; shown ear l ie r , the  v e l o c i t y  and I res sl ir ’ due t i  this

c ’Id ’ d ‘i r i r r s t r i  ‘ , i l  t e f  i 1€ can be calculated i! X f e c f i I e u  lv  t y  re ~~t ’ I i . ’

l t  t e e  of Wagner  fj~~’~ i

T li i  ~i, ~‘t l  i r ’er cclur ’I  described above seems to Is e ;;u ‘ c  a l ly

l i f t i h i ’  f o r  r ; t ’ l e m e n t i t  ion on a m i n f e o n h i  t i t e r .  Th n t h u l  l t r , ot ~~i i ’ ’

~ i t e d  by the i ; ; e ;u r n t t i o n s  of the  t h i n  ~ i n f : i 1  t h , ’ o r ,’ . T i ’ ’; J ; ;’ t l t l l l  1 1 1 ,

i n ’ ’  ves i i t c h over ~i ’  ~‘i i t  I n c  a i r f o it  i f  it is , ;uf I i i i ; t i y  t h i c k  :uid
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near the leading edge for any airfoil. Nevertheless , this ~r’oeedurc

can be used to determine a preliminary design to be refined , if

necessary , by more sophisticated methods . These methods consume

a large amount of computer time in the inverse mode and require a

large computer for their implementation . Considerable amount of

savings in computer time should be possible if the initial input in

close to the final design .



Sec tion 5

SUMMARY AND CONCLUSIONS

The purpose of the present research was to inv c?t iq lt the

feasibility of representing airfoil contours in terms of a ‘cries ‘ It

Wagner functions in airfoil procedures. It has been demonstrated

that a large class of airfoils can be adequately described by a

relatively small number of terms of Wagner series. A least squares ty~ ”

of procedure was used to determine the unknown coefficient;; ‘of then

terms .

For symmetrical airfoils , the Wagner series reprcosertatio t was

found to be especially useful when using the thin airfoil theory . It

is possible to determine the principal value of the improper int,Frdl;

that appear in this theory in closed form . Thus the long computer

time usually required to evaluate such integrals numerically ca: be

avoided . Both the direct method of analysis in which t i e  velocity

distribution is calculated for a known shape and the inverse metS ’ S of

design in which the airfoil shape corresponding to a specified velocity

distribution is determined arc presented in Section 3. The Wai~tle1

function rer,r” ;; ;ntalion of the airfoil allows f i;;t calculations ‘v ’;

in the inverse mode since it is possible to evaluate all the i n q r ; r

integrals in closed form . A method of designing nonsymmetrical airfoils

based on thin airfoil theory has been suggested in Section 4.

It is concluded that Wagner functions are suitable for i t  r e s e c t

ing symm etrical airfoil contours . They are not suit ’S , however’, for
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r e f ’r’ c’sentatiori of camber li nes since , at least in t h i n  a i r f o i l  theory ,

t h e ir  use leads to t h e  necessity of evaluating singular I n t l  I t i l

In ~rin ci l It , Wagner functions can be used to represent tie upper

and lower surfaces of nonsyminetrical airfoils , but t~ ; i r  use in

methods involving thick airfoil theory needs investig’,ati r;. The

Wa~ ro’r function representation also seems su itab le  for den  i pn ; n;”t I l l ’ ;

~~iV tif a boundary layer analysis capability. Finally, t h ” i r  use in

tr lr; ’ r)r;ic ,ilt ’F iJ design methods merits investigation .
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T A BLE 2. REPR E S E N T A T I O N  OF M A C A  0010 4IR FOI L

~V W A G N E R  F U N C T I O N  SER 1~~S

X /C V /C (PEF ) V/C (CAL ) Z ER ROf ~

0.05000 0 .029 6?  0 . 3 3 0 0 5  1 .4 5 1 1 2

0.01500 C .03500 0.035 12 3.33~ 29

0.10000 0.03902 0.33893 0.23834

0.15000 0.04455 0.04421 0.63300

O.2C000 0.04182 0.04758 0.50391

0.25000 C .04952 0.04942 0.19992

0.3CO0~) 0.05002 0.05009 0.13395

O.4C00 1) 0.04837 0.04862 0.51892

0.5 (000 0.04412 0.044 30 0.41104

0.60000 0.03803 0.03799 0.11044

0.TC000 0.03053 0.03034 0.62234

0.~~C00O C .0218? 0.02117 0.~~61~~2

0.90000 0.01201 0.01219 0.96935

0.95000 0.00672 0.006€9 0.48661
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T ABLE 3. REPR E S E N T A T I O N  OF MACA 0018 A I R F O I L

B Y W A G N E R  F U N C T I C N  SE RI :S

X/C V/C (REF) V/C (CAL ) Z E:R RO~

0.05000 0.05332 0.05409 1.44595

0.07500 0.06300 0.06321 0.33492

0.10000 0.07024 0.07007 0.24630

0 .15000 0.06018 0.07968 0.62859

0.2(000 0.08606 0.08563 0.49617

0.25000 0 .08912 0.08895 0.19524

0.3 (000 0.09003 0.09014 C .12551

0.4C000 0.08705 0.08750 0.52154

O .SC000 0.01941 0.07914 0.41431

0 .6C000 0.06845 0.06831 0.11103

0.7C000 0.05496 0.05461 0.6350 1

o .SC000 0.03935 0.03918 0.42694

0 .3C000 0.02112 0.02193 0 .97145

0.)5000 0.01210 0.01203 0.56198
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rA 31F: 7. C A L C ~~1ATED Sd A PE FOR M A C A  0006

Al ~FO1L ~1S INC IM V E R S ( M ET H O D

V /C (REF ) V/C (C AL) 2 ERR ~ i~

0 .0500) 0 .01777 0.01775 0.09%7

r) 07500 0.02100 C .020e 6 C .6761S

O .IC 000 0.02341 0.02320 0.U851

0.IS CC O 0 .02673 0.02649 0.~~941 3

0.02869 0 .02853 C .56117

0.2 SCC O 0 .02971 0.02966 C.17503

0.03001 0.03036 0 .17328

0.4C000 0.02902 0.02914 C .4100~

O.5C000 0.0266? C .02643 C.1548S

0 .6(CC3 C.022~~2 0.02243 1 .71341

O .TC 00~ 0 .01e32 0.01755 4 .18122

).~~CCO (’) 0.01312 0.01’13 7.53811

).~~C00.) 0 .00724 C .0C634 12 .37 565

).95CC0 0.00403 0.00329 18.28040
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T~ 8LE 8. CA LC t .4LATED SH A PE FOR M A C A  0010— 64

AIRF OIL USING INV ERSE METHOD

X /C V /c (RU) V/C (CAL ) Z E RRO R

0.05000 0.02722 0.02535 6.85525

0.07500 0.03178 0.02992 5.85274

0.10000 0.03533 0.03353 5.10048

0.15000 0.04056 0.03907 3.6834 3

0.20000 0.04411 0.04313 2.223~ 9

0.3C000 0.04856 0.04814 0.81315

0.4C000 0.05000 0.04969 0.61800

0.5(000 C.04856 0.34809 0.95964

0.60000 0.04433 0.04351 1.86104

0.70000 0.03733 0.03610 3.30565

0 .BC000 0.02761 0.02611 5.63065

0.9C000 0.01 556 0.01390 10.64261

0.95000 0.00856 0.00712 16.81075
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TABL E 9. CAL C U L A T E D  SHAPE FOR MA C A  0010— 66

AIRFOIL USIN G INV ERSE M E THOD

X/C V /C (REF ) V /C (CAL ) Z E RROR

0.05000 0.02656 0 102599 2 .14232

0.07500 0.03089 0.02941 4.78148

0.1C000 0.03400 0.03200 5.87941

0.15000 0.03856 0.03602 6.59492

0.2C000 0.04178 0.039 27 S.9980S

0.30000 0.04518 0.04459 2.61031

0.4C000 0.04822 0.04645 0.41905

0.5C000 0.04956 0.05046 1.81396

0.6(000 0.05000 0.04997 0.06200

0.70000 0.04889 0.04619 5.52465

0.80000 0.04300 0.03808 11.43023

0.9(000 0.02833 0.024 05 15 .11119

o.~~5ooo 0.01656 0.01386 16.31039
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